Generative Adversarial CT Volume Extrapolation for Robust Small-to-Large Field of View Registration

نویسندگان

چکیده

Intraoperative Computer Tomographs (iCT) provide near real time visualizations which can be registered with high-quality preoperative images to improve the confidence of surgical instrument navigation. However, intraoperative have a small field view making registration process error prone due reduced amount mutual information. We herein propose method extrapolate thin acquisitions as prior step registration, increase images, and hence also robustness guiding system. The is based on deep neural network trained adversarially using self-supervision slices from existing ones. Median landmark detection errors are by approximately 40%, yielding better initial alignment. Furthermore, intensity-based improved; surface distance an order magnitude, 5.66 mm 0.57 (p-value = 4.18×10−6). proposed extrapolation increases robustness, plays key role in intervention confidently.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-view Generative Adversarial Networks

Learning over multi-view data is a challenging problem with strong practical applications. Most related studies focus on the classification point of view and assume that all the views are available at any time. We consider an extension of this framework in two directions. First, based on the BiGAN model, the Multi-view BiGAN (MV-BiGAN) is able to perform density estimation from multi-view input...

متن کامل

Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks

Generative Adversarial Networks (GANs) are becoming popular choices for unsupervised learning. At the same time there is a concerted effort in the machine learning community to expand the range of tasks in which learning can be applied as well as to utilize methods from other disciplines to accelerate learning. With this in mind, in the current work we suggest ways to enforce given constraints ...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Robust Registration of Narrow-Field-Of-View Range Images

This paper focuses on range image registration for robot localization and environment mapping. It extends the well-known Iterative Closest Point (ICP) algorithm in order to deal with erroneous measurements. The dealing with measurement errors originating from external lighting, occlusions or limitations in the measurement range is only rudimentary in literature. In this context we present a non...

متن کامل

Robust Speech Recognition Using Generative Adversarial Networks

This paper describes a general, scalable, end-to-end framework that uses the generative adversarial network (GAN) objective to enable robust speech recognition. Encoders trained with the proposed approach enjoy improved invariance by learning to map noisy audio to the same embedding space as that of clean audio. Unlike previous methods, the new framework does not rely on domain expertise or sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app12062944